Lâmpadas de baixo custo ou… Uma Central Nuclear!


(http://www.ocrwm.doe.gov)

A associação britânica “The Friends of the Earth” trabalhando sobre projecções de consumo de energia eléctrica para o Reino Unido em 2030 estimou que uma central eléctrica de grandes dimensões ou duas médias teriam que ser dedicadas no Reino Unido a alimentarem apenas equipamentos eléctricos como televisões e computadores que estejam em modo de “stand-by”, isto é, desligados para com aquele LED verde que ligamos com o telecomando… A associação estimou também que a substituição de todas as lâmpadas incandescentes no Reino Unido por lâmpadas de baixo consumo em 2020 poderia poupar toda a energia gerada por… uma central nuclear!

De facto, já tinha para este último aspecto por um comentador aqui do Quintus (ver AQUI), mas desconhecia que esta simples substituição, que aliás já fiz em todas as divisões e candeiros lá na minha casa, representaria uma poupança de 2%, o que parece pouco… Mas estes dois por cento são muito Gigawatt, pelo menos no Reino Unido, já que corresponde ao contributo de uma central nuclear para a produção eléctrica. Imaginem agora a poupança em produção de energia e no consequente carbono enviado para a atmosfera por centrais eléctricas convencionais se existisse uma verdadeira política de incentivo fiscal para a substituição destas lâmpadas domésticas e nos candeeiros públicos? Continuariam assim a fazer sentidos os planos (e riscos!) da central nuclear proposta pelo grupo lidado de Patrick Monteiro de Barros (ver AQUI)? Parece-me que não…

Fonte: www.mng.org.uk

Se gostou deste artigo, adicione-o nas redes de notícias colaborativas:
DoMelhor.net (Portugal) DoMelhor
(Portugal) ou
Chuza.org (Galiza) Chuza
(Galiza) ou ainda em
Adicionar esta not�cia no Linkk Linkk (Brasil)

Anúncios
Categories: CodeFarmPt, Ecologia | 32 comentários

Navegação de artigos

32 thoughts on “Lâmpadas de baixo custo ou… Uma Central Nuclear!

  1. Golani

    não tenho conhecimento do estudo, mas á primeira vista parece-me “demasiada fruta”….acho que as conclusões do estudo são bastante exageradas, mas vou procurar informar-me melhor

    relativamente a Portugal:

    estamos entre os mais “ineficientes” no uso da energia, logo mais consumo

    a melhor, e mais barata, forma de produzir electricidade em Portugal é através da energia hidroeléctrica, uma energia renovável – ainda não maximizamos todo o seu potencial (recordar o fim do projecto em Foz Coa)

    a energia eólica começa a ser viável em termos económicos

    a energia solar é várias vezes mais cara e apenas subsiste à pala de subsidios

    estas energia produzem electricidade, a electricidade apenas representa 25 a 30% das nossas necessidades energéticas

    a grande dependência de Portugal é dos fósseis (que temos que importar), somos um dos países mais dependentes da Europa

    não tenho opinião formada relativamente ao nuclear, mas acho que pelo menos deveria ser alvo de uma discussão mais aprofundada

    um dos fundadores da Greepeace converteu-se ao nuclear

  2. Golani:
    1. Tb fiquei espantado com esta projecção, mas atenção que o estudo refere-se ao consumo estimado em 2030, não hoje! Isso pode explicar o nosso “espanto”.
    2. A hídrica é muito interessante, mas faz uma bela mossa na paisagem e sacrifica frequentemente bons solos agrícolas… Por outro lado, a água será o grande problema do XXI, dizem alguns estudos (alguns, bem recentes, dizem que o Aquecimento Global vai aumentar a pluvisiodade a norte e diminuir a sul, isto é, em Portugal e em África).
    3. Creio que há agora uma empresa americana que afirma ter painéis com rendimentos de 40%… Neste domínio estão a fazer-se grandes progressos… E nem sempre será – como é hoje – subsidiodependente…
    4. O Nuclear é limpo, mas não renovável (o urânio não é infinito!), produz detritos que ninguém sabe onde armazenar e sobretudo, como o recente acidente no Japão demonstrou… Shit happens! O impacto de um meltdown ou de uma fuga de grandes proporções é simplesmente demasiado grande para dever ser enfrentado, ainda que seja muito improvável (ou se calha, nem tanto, como se viu no Japão…)

  3. Golani

    a energia hídrica é “renovável” e a mais barata
    “mossa na paisagem” tb faz a eólica e a solar, não acho q seja um argumento significativo
    sacrificar solos agrícolas depende de caso para caso, nem sempre é assim e outras vezes mesmo q sacrifique poderão surgir actividades que tragam mais riqueza á pop. local do q a agricultura

    a prioridade veria ser maximizar esta energia

    relativamente á pluvisiodade, os estudos não são conclusivos para Portugal

    MANKIND is influencing how much it rains, according to researchers led by Xuebin Zhang of Environment Canada. More rain and snow is falling in Canada, Britain and northern Europe, two-thirds of which is attributable to human activities. Britain is suffering one of its wettest summers ever, with severe flooding in England. More rain is also falling in areas immediately south of the equator including Brazil, southern Africa, Indonesia and Australia. Nearly all of this is caused by mankind. But countries immediately north of the equator, in Africa, India and parts of China, are getting less water. The researchers compared historical records of rainfall last century with computer simulations of climate change. The work is published in this week’s Nature.

    Gráfico: http://www.economist.com/research/articlesBySubject/displaystory.cfm?subjectid=7933596&story_id=9537560

    as actuais centrais solares produzem energia várias vezes mais cara que uma barragem
    para ser competitivo o preço é subsidiado pelo Estado (ou seja, via impostos do contribuintes)
    recentemente inauguramos a maior central do Mundo em Serpa ( a Califórnia tenciona construir uma 10x maior), quem está por detrás do projecto é a maior multinacional delas todas, a GE …. e os painéis foram feitos na China ..ehehe

    se se quer dar subsídios, então estes deviam ir para os investigadores, para I&D

    relativamente ao nuclear, Portugal tem uma vantagem pq tem jazidas de urânio
    os detritos são um problema, mas se calhar daqui a uns anos envia-mos-los para o espaço ou coisa parecida

    relativamente à segurança acho q existe muito exagero

    quantas mortes foram provocadas pela energia nuclear nos países “ocidentais” (Europa, América Norte, Japão…) desde que foi construída a 1ª central ?

    (não considero os ex países comunistas pq o seu nível de segurança, transparência, fiscalização….não tem/teve nada a ver com o ocidente)

    Comparar esse nº de mortes com o nº de mortes na industria petrolífera, gás natural, nas minas de carvão ect…no mesmo período de tempo

    PS: nós já corremos um risco…..Espanha tem uma central na fronteira, se aquilo explodisse afectava tanto espanhóis como Portugueses

    PS2: mas referi, não tenho opinião formada, apenas acho q esta opção deve ser melhor discutida…e como referi a nossa maior dependência energética, e consumo, está no petróleo, não na electricidade

  4. Golani:

    “a energia hídrica é “renovável” e a mais barata”
    -> Dizem que sim.

    ““mossa na paisagem” tb faz a eólica e a solar, não acho q seja um argumento significativo
    sacrificar solos agrícolas depende de caso para caso, nem sempre é assim e outras vezes mesmo q sacrifique poderão surgir actividades que tragam mais riqueza á pop. local do q a agricultura”
    -> Mas uma lagoa artificial altera muito mais a paisagem e o ecosistema que umas centenas de painés ou uma dezenas de moinhos… Muito mais, em área e em impacto físico no local. RIqueza à população local?… Não sei… Pois se perde os seus campos de cultivo… E ganha pouco Emprego (que emprego local dá uma barragem: zero?)

    “a prioridade veria ser maximizar esta energia”
    -> Embora reconheça estes defeitos, concordo que aqui temos muito a aprofundar e é uma área prioritária… é ecológica (zero emissões e zero matéria-prima) e tb permite controlar o curso de rios e armazenar água (o tal bem que será cada vez mais escasso). Por isso estou mais ou menos de acordo.

    “relativamente á pluvisiodade, os estudos não são conclusivos para Portugal”
    -> De facto, não. São mais absolutos para o hemisfério sul.

    “as actuais centrais solares produzem energia várias vezes mais cara que uma barragem
    para ser competitivo o preço é subsidiado pelo Estado (ou seja, via impostos do contribuintes)
    recentemente inauguramos a maior central do Mundo em Serpa ( a Califórnia tenciona construir uma 10x maior), quem está por detrás do projecto é a maior multinacional delas todas, a GE …. e os painéis foram feitos na China ..ehehe”
    -> Pois… Por isso é que sabes a noticia de cor e salteado… 😉

    “se se quer dar subsídios, então estes deviam ir para os investigadores, para I&D”
    -> Mas a ideia deles não é também potenciar a criação de empresas industriais nessa área e permitir o seu florescimento até o dia em que a energia solar seja realmente rentável (sem subsídios)?

    “relativamente ao nuclear, Portugal tem uma vantagem pq tem jazidas de urânio
    os detritos são um problema, mas se calhar daqui a uns anos envia-mos-los para o espaço ou coisa parecida”
    -> Aos custos actuais por grama não vejo como isso poderá ficar alguma vez mais barato do que a energia resultante da produção dos mesmos… Os detritos são aliás o argumento mais forte contra o nuclear, ainda que…

    “relativamente à segurança acho q existe muito exagero”
    …este outro argumento seja decisivo e me tenha feito “virar” recentemente da indecisão para um claro “contra” o Nuclear.

    “quantas mortes foram provocadas pela energia nuclear nos países “ocidentais” (Europa, América Norte, Japão…) desde que foi construída a 1ª central ?
    (não considero os ex países comunistas pq o seu nível de segurança, transparência, fiscalização….não tem/teve nada a ver com o ocidente)”
    -> Mas o recente acidente grave no Japão aconteceu num dos países mais avançados do mundo…

  5. Golani

    RIqueza à população local?… Não sei… Pois se perde os seus campos de cultivo… E ganha pouco Emprego (que emprego local dá uma barragem: zero?)

    uma barragem traz crescimento económico regional aquando da construção: fornecedores para obra, emprego entre os locais, mão de obra de fora, mais dinheiro a circular, bon para os restaurantes, cafés, mercados, pensões, arrendar casas, melhoria das acessibilidades etc…

    após a obra feita, as barragens tornam-se destinos atractivos de lazer e turismo (especialmente no interior e nos periodos mais quentes do ano) e desportos e actividades náuticas…

    A SIC há umas semanas foi a Foz Coa e a população local está muito desiludida com a não construção da barragem, os que investiram dinheiro na altura em negócios estão arrependidos

    as “gravuras” não trouxeram nem 10% dos visitantes esperados

    a maioria da pop. local preferiria a barragem

    Mas a ideia deles não é também potenciar a criação de empresas industriais nessa área e permitir o seu florescimento até o dia em que a energia solar seja realmente rentável (sem subsídios)?

    não estamos a criar nada nem a produzir nada: a tecnologia é estrangeira e as placas foram feitas na china

    estas empresas e estes investimentos são simples veículos para captar os subsidios…os políticos alinham no jogo pq “energia solar” é um tema sexy, um soundbyte que agrada ao povão
    no fim a electricidade produzida além de várias vezes mais cara é em quantidade marginal face ao consumo nacional

    se se quer gastar dinheiro que se gaste em I&D, investigar novas tecnologias de células fotovoltaico mais eficientes, se tivermos sucesso podemos patentear a tecnologia e ficar com a propriedade intelectual e vender a tecnologia que é onde está o valor acrescentado

    Mas o recente acidente grave no Japão aconteceu num dos países mais avançados do mundo…

    então deve ser encarado como algo mt positivo para energia nuclear

    um acidente grave na maior central nuclear do Japão provocou ZERO vitimas (e o acidente foi provocado pela natureza) e a fuga de radiação foi considerada não perigosa para as pessoas

    em termos de segurança, outras energias matam muito mais
    existem é mt ideias pré concebidas sobre o nuclear que não corresponde,m á realidade

  6. Prezados Clavis e Golani,
    Acompanhei os comentários e de minha parte considero que a energia nuclear até pode ser uma muito boa solução, mas até o presente temos um problema intransponível: o que fazer com os resíduos provenientes da operação?

    A título de sugestão, recomendaria que os resíduos fossem coletados e armazenados em um único local, até que se chegasse a uma quantidade pré-determinada, que justificasse o custo econômico, quando então seriam lançados ao espaço em trajetória direcionada ao sol.

    Xicolopes

  7. Golani

    Going Nuclear
    A Green Makes the Case

    By Patrick Moore
    Sunday, April 16, 2006; B01

    In the early 1970s when I helped found Greenpeace, I believed that nuclear energy was synonymous with nuclear holocaust, as did most of my compatriots. That’s the conviction that inspired Greenpeace’s first voyage up the spectacular rocky northwest coast to protest the testing of U.S. hydrogen bombs in Alaska’s Aleutian Islands. Thirty years on, my views have changed, and the rest of the environmental movement needs to update its views, too, because nuclear energy may just be the energy source that can save our planet from another possible disaster: catastrophic climate change.

    Look at it this way: More than 600 coal-fired electric plants in the United States produce 36 percent of U.S. emissions — or nearly 10 percent of global emissions — of CO2, the primary greenhouse gas responsible for climate change. Nuclear energy is the only large-scale, cost-effective energy source that can reduce these emissions while continuing to satisfy a growing demand for power. And these days it can do so safely.

    I say that guardedly, of course, just days after Iranian President Mahmoud Ahmadinejad announced that his country had enriched uranium. “The nuclear technology is only for the purpose of peace and nothing else,” he said. But there is widespread speculation that, even though the process is ostensibly dedicated to producing electricity, it is in fact a cover for building nuclear weapons.

    And although I don’t want to underestimate the very real dangers of nuclear technology in the hands of rogue states, we cannot simply ban every technology that is dangerous. That was the all-or-nothing mentality at the height of the Cold War, when anything nuclear seemed to spell doom for humanity and the environment. In 1979, Jane Fonda and Jack Lemmon produced a frisson of fear with their starring roles in “The China Syndrome,” a fictional evocation of nuclear disaster in which a reactor meltdown threatens a city’s survival. Less than two weeks after the blockbuster film opened, a reactor core meltdown at Pennsylvania’s Three Mile Island nuclear power plant sent shivers of very real anguish throughout the country.

    What nobody noticed at the time, though, was that Three Mile Island was in fact a success story: The concrete containment structure did just what it was designed to do — prevent radiation from escaping into the environment. And although the reactor itself was crippled, there was no injury or death among nuclear workers or nearby residents. Three Mile Island was the only serious accident in the history of nuclear energy generation in the United States, but it was enough to scare us away from further developing the technology: There hasn’t been a nuclear plant ordered up since then.

    Today, there are 103 nuclear reactors quietly delivering just 20 percent of America’s electricity. Eighty percent of the people living within 10 miles of these plants approve of them (that’s not including the nuclear workers). Although I don’t live near a nuclear plant, I am now squarely in their camp.

    And I am not alone among seasoned environmental activists in changing my mind on this subject. British atmospheric scientist James Lovelock, father of the Gaia theory, believes that nuclear energy is the only way to avoid catastrophic climate change. Stewart Brand, founder of the “Whole Earth Catalog,” says the environmental movement must embrace nuclear energy to wean ourselves from fossil fuels. On occasion, such opinions have been met with excommunication from the anti-nuclear priesthood: The late British Bishop Hugh Montefiore, founder and director of Friends of the Earth, was forced to resign from the group’s board after he wrote a pro-nuclear article in a church newsletter.

    There are signs of a new willingness to listen, though, even among the staunchest anti-nuclear campaigners. When I attended the Kyoto climate meeting in Montreal last December, I spoke to a packed house on the question of a sustainable energy future. I argued that the only way to reduce fossil fuel emissions from electrical production is through an aggressive program of renewable energy sources (hydroelectric, geothermal heat pumps, wind, etc.) plus nuclear. The Greenpeace spokesperson was first at the mike for the question period, and I expected a tongue-lashing. Instead, he began by saying he agreed with much of what I said — not the nuclear bit, of course, but there was a clear feeling that all options must be explored.

    Here’s why: Wind and solar power have their place, but because they are intermittent and unpredictable they simply can’t replace big baseload plants such as coal, nuclear and hydroelectric. Natural gas, a fossil fuel, is too expensive already, and its price is too volatile to risk building big baseload plants. Given that hydroelectric resources are built pretty much to capacity, nuclear is, by elimination, the only viable substitute for coal. It’s that simple.

    That’s not to say that there aren’t real problems — as well as various myths — associated with nuclear energy. Each concern deserves careful consideration:

    · Nuclear energy is expensive. It is in fact one of the least expensive energy sources. In 2004, the average cost of producing nuclear energy in the United States was less than two cents per kilowatt-hour, comparable with coal and hydroelectric. Advances in technology will bring the cost down further in the future.

    · Nuclear plants are not safe. Although Three Mile Island was a success story, the accident at Chernobyl, 20 years ago this month, was not. But Chernobyl was an accident waiting to happen. This early model of Soviet reactor had no containment vessel, was an inherently bad design and its operators literally blew it up. The multi-agency U.N. Chernobyl Forum reported last year that 56 deaths could be directly attributed to the accident, most of those from radiation or burns suffered while fighting the fire. Tragic as those deaths were, they pale in comparison to the more than 5,000 coal-mining deaths that occur worldwide every year. No one has died of a radiation-related accident in the history of the U.S. civilian nuclear reactor program. (And although hundreds of uranium mine workers did die from radiation exposure underground in the early years of that industry, that problem was long ago corrected.)

    · Nuclear waste will be dangerous for thousands of years. Within 40 years, used fuel has less than one-thousandth of the radioactivity it had when it was removed from the reactor. And it is incorrect to call it waste, because 95 percent of the potential energy is still contained in the used fuel after the first cycle. Now that the United States has removed the ban on recycling used fuel, it will be possible to use that energy and to greatly reduce the amount of waste that needs treatment and disposal. Last month, Japan joined France, Britain and Russia in the nuclear-fuel-recycling business. The United States will not be far behind.

    · Nuclear reactors are vulnerable to terrorist attack. The six-feet-thick reinforced concrete containment vessel protects the contents from the outside as well as the inside. And even if a jumbo jet did crash into a reactor and breach the containment, the reactor would not explode. There are many types of facilities that are far more vulnerable, including liquid natural gas plants, chemical plants and numerous political targets.

    · Nuclear fuel can be diverted to make nuclear weapons. This is the most serious issue associated with nuclear energy and the most difficult to address, as the example of Iran shows. But just because nuclear technology can be put to evil purposes is not an argument to ban its use.

    Over the past 20 years, one of the simplest tools — the machete — has been used to kill more than a million people in Africa, far more than were killed in the Hiroshima and Nagasaki nuclear bombings combined. What are car bombs made of? Diesel oil, fertilizer and cars. If we banned everything that can be used to kill people, we would never have harnessed fire.

    The only practical approach to the issue of nuclear weapons proliferation is to put it higher on the international agenda and to use diplomacy and, where necessary, force to prevent countries or terrorists from using nuclear materials for destructive ends. And new technologies such as the reprocessing system recently introduced in Japan (in which the plutonium is never separated from the uranium) can make it much more difficult for terrorists or rogue states to use civilian materials to manufacture weapons.

    The 600-plus coal-fired plants emit nearly 2 billion tons of CO2annually — the equivalent of the exhaust from about 300 million automobiles. In addition, the Clean Air Council reports that coal plants are responsible for 64 percent of sulfur dioxide emissions, 26 percent of nitrous oxides and 33 percent of mercury emissions. These pollutants are eroding the health of our environment, producing acid rain, smog, respiratory illness and mercury contamination.

    Meanwhile, the 103 nuclear plants operating in the United States effectively avoid the release of 700 million tons of CO2emissions annually — the equivalent of the exhaust from more than 100 million automobiles. Imagine if the ratio of coal to nuclear were reversed so that only 20 percent of our electricity was generated from coal and 60 percent from nuclear. This would go a long way toward cleaning the air and reducing greenhouse gas emissions. Every responsible environmentalist should support a move in that direction.

    pmoore@greenspirit.com

    Patrick Moore, co-founder of Greenpeace, is chairman and chief scientist of Greenspirit Strategies Ltd. He and Christine Todd Whitman are co-chairs of a new industry-funded initiative, the Clean and Safe Energy Coalition, which supports increased use of nuclear energy.

    artigo: http://www.washingtonpost.com/wp-dyn/content/article/2006/04/14/AR2006041401209.html

  8. xico: É uma ideia… Mas o custo por grama continua a ser proibitivo para caramba… essa é que é a grande barreira dessa solução!

    golani: ok… É um bom texto que merece reflexão… A minha posição aqui tb não é muito firme, mas continuo a inclinar-me para a posição do contra… mas vou ler e reflectir sobre este texto.

  9. Caros Clavis e Golani,

    De certo ainda no presente é um projeto caro, mas penso que, do mesmo modo que aqui e ali, volta e meia, é proposta criação de um fundo prá isso e praquilo, poderia ser também criado um fundo, cujos recursos adviriam dos países utilizadores da energia. Este fundo seria gerido por uma Agência Internacional, sob a fiscalização da ONU. É só uma idéia…
    Xicolopes

  10. Xico: Sim, mas o melhor mesmo é não os produzir de todo… Seria viável, sim… mas onde encontrar hoje um local suficientemente grande e desabitado e alguém que quisesse receber no seu território esse presente envenado? (literalmente!)

  11. bianca castafiore

    A ideia de lançar os detritos nucleares no espaço é antiga, e parece-me completamente irresponsável. Tal como quando andámos a lançar detritos à toa no mar porque ele TUDO REGENERAVA… Ou a ecologia não tem lugar no resto do universo? É só para a nossa casinha?
    E deixamos um problema para o qual NÃO TEMOS uma boa solução aos descendentes dos actuais humanos? Não é assim um bocadinho arrogante demais e imoral?
    E para construir uma central que vai produzir mais energia do que a necessária, a tão elevado custo, se podemos resolver a coisa com outras vantagens e sem estes problemas?
    A verdade é que, no domínio nuclear, ainda não chegámos a um nível de conhecimentos que nos permita usá-lo com segurança. É isso que parece ter sido esquecido. É como entregar uma arma carregada a alguém que não sabe usá-la: não vai ser capaz de se defender com ela, e ainda acaba vítima dela. Espere-se pelo resultado das investigações que se estão a fazer noutros domínios da utilização do átomo que não deixam resíduos radioactivos. Para quê tanta pressa em usar o que não conhecemos de modo a dar garantias suficientes? É a cegueira do costume… com mira em quê?

    NEM SEQUER DEVÍAMOS DISCUTIR A ENERGIA NUCLEAR COMO SOLUÇÃO POSSÍVEL, PORQUE SIMPLESMENTE NÃO SABEMOS O SUFICIENTE NESSE DOMÍNIO.

  12. Bem… O lançamento para o Espaço dos detritos radioactivos nunca será viável do ponto de vista financeiro, dado o custo de lançamento por grama… E um acidente pode sempre acontecer, independentemente do melhor design e das melhores medidas de segurança que se estabeleçam… E mesmo que o façamos, quem pode garantir que os nossos vizinhos fazem o mesmo? Isto é, quem garante que uma central de um país vizinho vai ao ar? É que as consequências de um meltodown pode facilmente ultrapassar todas as fronteiras…

  13. Quanto aos custos… Lançar um satélite médio custa hoje cerca de 500 milhões de dólares. E um satélite médio pesa apenas entre 300 e 900 Kg… Quantas toneladas de detritos radioactivos existirão já hoje no mundo?… Dava muito milhão de dólar…

  14. Anónimo

    Discordo da asserção “NEM SEQUER DEVÍAMOS DISCUTIR A ENERGIA NUCLEAR COMO SOLUÇÃO POSSÍVEL, PORQUE SIMPLESMENTE NÃO SABEMOS O SUFICIENTE NESSE DOMÍNIO.”

    Queiramos ou não, Energia Nuclear e o seu uso, é realidade. Não discutir a realidade, não buscar soluções para problemas reais, isto sim, é impraticável, arrogante e até imoral.

    Xicolopes

  15. Concordo com o Xicolopes quando este afirma que devemos o Nuclear. A Energia Nuclear não é hoje uma hipótese que pode ser ou não descartada, é uma realidade preemente, e a maior fonte de energia eléctrica em muitos países… Por isso, a discussão é essencial.
    Mas neste momento, a balança parece-me pender claramente para o lado do contra, pelo menos em mim… Sobretudo por causa do problema dos resíduos e da sempre possível (ainda que remota) possibilidade de um desastre de grandes dimensões…

  16. Golani

    Solving “Fission Impossible”
    Is nuclear power’s comeback for real?
    By Daniel Gross
    Posted Saturday, Oct. 20, 2007, at 7:04 AM ET

    We all know that $30-a-barrel oil isn’t coming back, just as we know that simply turning off a few lights won’t halt global warming. Yet the search for a low-emission, nonfossil-fuel source of energy has been a bit like American Idol: One after another, fresh-faced alternative-energy-rock-star wannabes are eliminated. Wind and solar are nice and clean—but the sun doesn’t work 24/7, and the wind is fickle. Ethanol offers politicians the irresistible combination of grow-your-own energy independence and the potential to make Iowa primary voters rich. But because it’s corrosive and soluble in water, it’s hard to transport ethanol over long distances through pipelines. And to raise a crop sufficient to meet our gasoline thirst, we’d have to plant the entire continental United States with maize, leaving only a small corner of Delaware for bedrooms and a den.

    As contestants are eliminated, it’s worth looking at the geezer in the bunch: nuclear power. Last month, nearly 50 years after the Shippingport Atomic Power Station in Pennsylvania became the first commercial power plant to go online, the New Jersey-based utility NRG filed papers seeking permission to build a nuclear power plant in Texas. This represents the first such new application since 1979, nuclear’s annus horribilis. Two weeks after the debut of the fear-inducing nuclear-disaster flick The China Syndrome, life imitated art, as the Three Mile Island nuclear plant in Pennsylvania suffered a partial meltdown. That effectively forestalled the creation of new nuclear power plants for a generation. The last reactor to come online was the Watts Bar reactor in Tennessee, in May 1996.

    So, what’s changed? Twenty-eight years of safe operation (in the United States, at least) have helped pave the way for NRG and for a couple of dozen other possible plants in the works. Indeed, even as they’re mocked in popular culture—see The Simpsons—the nation’s 104 commercial nuclear-generating units have been quietly humming along without significant incident. “The Bureau of Labor Statistics will tell you that the nuclear industry is the safest place to work—safer than real estate and Wall Street,” says former New Jersey Gov. Christine Todd Whitman. (You remember her—she played the environmentalist in the first Bush term.) Through the first half of this year, nukes provided 19.8 percent of U.S. electricity generation, about the same proportion as they did in 1990.

    More important, thanks to developments in the broader environment, many longtime critics are changing their tune. As a co-founder of Greenpeace, Patrick Moore used to call nuclear energy “synonymous with nuclear holocaust.” But he now believes “nuclear is the cleanest, safest and has the smallest footprint” of any major energy alternative source. He says that nukes are cheap and reliable, unlike alternative-energy sources such as wind and solar. Neither do nuclear plants spew sulfur dioxide into the atmosphere, as coal-powered plants do, or create massive volumes of CO2 emissions, as gas-fired plants do. The attitude of Moore, who co-chairs the Clean and Safe Energy Coalition, an industry-backed supporter of nuclear energy, is virtually indistinguishable from that of David Crane, chief executive officer of NRG: “Advanced nuclear technology is the only currently viable large-scale alternative to traditional coal-fueled generation to produce none of the traditional air emissions—and most importantly in this age of climate change—no carbon dioxide or other greenhouse gases.”

    Another megatrend is working in nuclear’s favor: demographics. In 2006, an estimated 41.3 percent of the population was under 30. Which is to say that the percentage and number of Americans who remember the accidents at Three Mile Island and Chernobyl decline with every passing year.

    To be sure—in any article dealing with alternative energy, there’s always a “to be sure” section—nuclear power has some serious problems. It takes a lot of money, and a lot of time, to add new capacity. NRG says that if all goes well, its new nuclear units, which could power 2 million homes, may come online in 2014 and 2015. And investors aren’t eager to commit billions of dollars to controversial long-term projects that might never get built. The government is trying to help by providing risk insurance and streamlining the approval process.

    There’s also still the huge problem of where to put the waste. But as Rudy Giuliani suggested recently, if a bunch of European socialists can figure out what to do with the radioactive leftovers, why can’t we? “France is ahead of us in nuclear power,” he said recently, with the same sort of disgust he might use in reporting that the Red Sox were ahead of his beloved Yankees. “Eighty percent of the electricity in France comes from nuclear power.”

    But when it comes to reaching a definitive solution on how to deal with nuclear waste, our vieux allies are stuck in the same quandary as we are. For years, Congress has been debating a proposal to store nuclear waste in Nevada’s Yucca Mountain. In France, where plans to bury waste in rural areas raised similar hackles, the response has been to change the conversation. France has developed a program to store waste temporarily, while researchers figure out what to do with it. It’s hardly an elegant solution. Which explains why nuclear energy, which has been the energy of the future for the last 50 years, may continue to be so.

    This article also appears in the Oct. 29 issue of Newsweek.
    Daniel Gross is the Moneybox columnist for Slate and the business columnist for Newsweek. You can e-mail him at moneybox@slate.com. He is the author of Pop! Why Bubbles Are Great for the Economy.

    Article URL: http://www.slate.com/id/2176189/

  17. li no Economist que uma sondagem recente feita no RU dava a sua população mais adepta do que nunca da energia nuclear…
    mas também estava no mesmo artigo uma referência ao 3º mais grave acidente nuclear de sempre… precisamente sucedido no RU…

  18. Golani

    mas também estava no mesmo artigo uma referência ao 3º mais grave acidente nuclear de sempre… precisamente sucedido no RU…

    que não provocou vitimas

    Experts insist that a repeat of the Windscale accident is extremely unlikely. The heat build-up that sparked the fire was caused by poor knowledge of reactor physics, which are much better understood today. The reactor itself—designed to produce plutonium for Britain’s bombs—was full of flammable material and built with few of the safety features that modern power stations are laden with. Simon Taylor, an economist at Cambridge University’s business school, argues that Windscale was good for Britain’s nuclear industry, since it focused minds on safety.

    http://www.economist.com/world/britain/displaystory.cfm?story_id=9954105

  19. sim… mas por lá (tenho o artigo em papel pq por acaso até comprei essa revista) também se dizia que a radiação chegou a toda a europa e que o acidente só foi descoberto depois do incêndio do reactor ter ardido sem que ninguém soubesse durante umas 20 horas… E que a “solução” foi arriscada…
    Hoje sabe-se muito mais, é certo. Mas fica a minha questão de sempre:
    Será que queremos mesmo viver com este risco? Como garantir que nunca ninguém algures, comete um erro fatal? É que os homens falham… não só os técnicos, mas também os engenheiros e os que desenham os reactores.

  20. Golani

    tens actualmente 2 problemas:

    _peak oil
    -aquecimento global motivado por emissões CO2 (este é um “problema” dependendo da perspectiva)

    como é q tencionas satisfazer a necessidade de energia no médio. longo prazo de uma forma fiável e sustentada ?

    (PS: quantas ventoinhas, quantos painéis solares são necessário para o mesmo output de energia de uma central nuclear ? )

  21. Golani

    However, some people claim that the problems of nuclear waste do not come anywhere close to approaching the problems of fossil fuel waste.[44][45]. A 2004 article from the BBC states: “The World Health Organization (WHO) says 3 million people are killed worldwide by outdoor air pollution annually from vehicles and industrial emissions, and 1.6 million indoors through using solid fuel.”[14] In the U.S. alone, fossil fuel waste kills 20,000 people each year.[46] A coal power plant releases 100 times as much radiation as a nuclear power plant of the same wattage.[47] In addition, fossil fuel waste causes global warming, which leads to increased deaths from hurricanes, flooding, and other weather events.

  22. Golani:
    ” tens actualmente 2 problemas:
    _peak oil
    -aquecimento global motivado por emissões CO2 (este é um “problema” dependendo da perspectiva)”
    como é q tencionas satisfazer a necessidade de energia no médio. longo prazo de uma forma fiável e sustentada ?
    (PS: quantas ventoinhas, quantos painéis solares são necessário para o mesmo output de energia de uma central nuclear ? )”

    -> Não pretendo ter na manga a panaceia universal para todos os males deste mundo… E continuo sempre aberto a mudar de opinião, quando me apresentam argumentos decisivos (ver p.ex. as minhas inflexões quanto à redução da pobreza na Índia e na China, ainda que há à custa de um aumento dos níveis de desigualdade e de um mundo rural em explosão eminente).
    -> No caso Nuclear não posso deixar de observar que iludes a resposta à questão fundamental, aqui: Vale a pena correr o risco de um Acidente em larga escala? A minha tese fundamental, é que não, especialmente havendo uma multiplicidade de alternativas.
    -> O Pico está aí, e está aqui, também pq o consumo não pára de crescer. Estabilizá-lo é a primeira prioridade, via melhores motores, mais eficiência energética (a China é aqui o país mais ineficiente do mundo) e redução consciente de padrões de consumo suicidários a longo prazo (só há uma Terra, ao fim ao cabo, e os recursos naturais são por natureza, limitados).
    -> Com o Consumo estabilizado seria possível recorrer à panoplia de alternativas hoje existentes para compensar o Pico… Solar (muito promissora), Biocombustíveis, Ondas, Geotérmica, etc…

  23. Golani

    No caso Nuclear não posso deixar de observar que iludes a resposta à questão fundamental, aqui: Vale a pena correr o risco de um Acidente em larga escala? A minha tese fundamental, é que não, especialmente havendo uma multiplicidade de alternativas

    mas q risco ? a indústria nuclear tem operado há décadas sem problemas significativos

    enquanto que as alternativas fósseis:

    In the U.S. alone, fossil fuel waste kills 20,000 people each year.
    A coal power plant releases 100 times as much radiation as a nuclear power plant of the same wattage.

    sem falar emissões CO2

    as alternativas renováveis não têm capacidade de produção para satisfazer a procura

  24. Golani

    o problema maior serão os resíduos, não a segurança operacional

  25. têm havido muitos “problemas significativos”, Golani…
    E sobretudo, existem muitos mais problemas potenciais, especialmente nestas centrais de gerações anteriores que agora nos EUA … E esta lista:
    http://www.atomicarchive.com/Reports/Japan/Accidents.shtml
    Major Nuclear Power Plant Accidents
    December 12, 1952

    A partial meltdown of a reactor’s uranium core at the Chalk River plant near Ottawa, Canada, resulted after the accidental removal of four control rods. Although millions of gallons of radioactive water poured into the reactor, there were no injuries.
    October 1957

    Fire destroyed the core of a plutonium-producing reactor at Britain’s Windscale nuclear complex – since renamed Sellafield – sending clouds of radioactivity into the atmosphere. An official report said the leaked radiation could have caused dozens of cancer deaths in the vicinity of Liverpool.
    Winter 1957-’58

    A serious accident occurred during the winter of 1957-58 near the town of Kyshtym in the Urals. A Russian scientist who first reported the disaster estimated that hundreds died from radiation sickness.
    January 3, 1961

    Three technicians died at a U.S. plant in Idaho Falls in an accident at an experimental reactor.
    July 4, 1961

    The captain and seven crew members died when radiation spread through the Soviet Union’s first nuclear-powered submarine. A pipe in the control system of one of the two reactors had ruptured.
    October 5, 1966

    The core of an experimental reactor near Detroit, Mich., melted partially when a sodium cooling system failed.
    January 21, 1969

    A coolant malfunction from an experimental underground reactor at Lucens Vad, Switzerland, releases a large amount of radiation into a cave, which was then sealed.
    December 7, 1975

    At the Lubmin nuclear power complex on the Baltic coast in the former East Germany, a short-circuit caused by an electrician’s mistake started a fire. Some news reports said there was almost a meltdown of the reactor core.
    March 28, 1979

    Near Harrisburg, Pennsylvania, America’s worst nuclear accident occurred. A partial meltdown of one of the reactors forced the evacuation of the residents after radioactive gas escaped into the atmosphere.
    February 11, 1981

    Eight workers are contaminated when more than 100,000 gallons of radioactive coolant fluid leaks into the contaminant building of the Tennessee Valley Authority’s Sequoyah 1 plant in Tennessee.
    April 25, 1981

    Officials said around 45 workers were exposed to radioactivity during repairs to a plant at Tsuruga, Japan.
    April 26, 1986

    The world’s worst nuclear accident occurred after an explosion and fire at the Chernobyl nuclear power plant. It released radiation over much of Europe. Thirty-one people died iin the immediate aftermath of the explosion. Hundreds of thousands of residents were moved from the area and a similar number are belived to have suffered from the effects of radiation exposure.
    March 24, 1992

    At the Sosnovy Bor station near St. Petersburg, Russia, radioactive iodine escaped into the atmosphere. A loss of pressure in a reactor channel was the source of the accident.
    November 1992

    In France’s most serious nuclear accident, three workers were contaminated after entering a nuclear particle accelerator in Forbach without protective clothing. Executives were jailed in 1993 for failing to take proper safety measures.
    November 1995

    Japan’s Monju prototype fast-breeder nuclear reactor leaked two to three tons of sodium from the reactor’s secondary cooling system.
    March 1997

    The state-run Power Reactor and Nuclear Fuel Development Corporation reprocessing plant at Tokaimura, Japan, contaminated at least 35 workers with minor radiation after a fire and explosion occurred.
    September 30, 1999

    Another accident at the uranium processing plant at Tokaimura, Japan, plant exposed fifty-five workers to radiation. More than 300,000 people living near the plant were ordered to stay indoors. Workers had been mixing uranium with nitric acid to make nuclear fuel, but had used too much uranium and set off the accidental uncontrolled reaction.

    Refere apenas os “Major Nuclear Power Plant Accidents”!

    E aqui para nós… Achas mesmo que todas estas bolas vermelhas:
    http://www.insc.anl.gov/pwrmaps/map/world_map.php
    São bem geridas e em total segurança?

  26. E o eterno (e insolúvel) problema dos resíduos é também um problema de segurança, stricto sensu…

  27. Golani

    primeiro, falo da indústria nuclear civil ocidental ( os soviéticos funcionam de maneira diferente)

    comparando as consequências dos incidentes nucleares com os incidentes na energia fóssil (oil, carvão, gás natural) eles são relativamente pouco significativos

    é um facto, basta comparar os números

    e os modernos reactores são ainda mais seguros, são estes que vão ser construidos

    os resíduos é um problema mais sério, os Franceses ( que é que mais usa a energia nuclear ) reutilizam-nos novamente e assim reduzem os resíduos

  28. compreendo, mas será que podemos mesmo isolar as consequências de um grande acidente nuclear nas “estanques” fronteiras de um país? Não me parece… Quanto à escala das suas consequências… Quantos acidentes e consequências da energia fóssil são necessárias para igualar aquelas de um meltdown do core?…
    Os modernos sim, parece que são mesmo muito seguros (mas nunca a 100%, que isso é coisa que não pode existir), mas a questão está nos antigos, cuja vida útil nos EUA e no EU foi recentemente prolongada… E naqueles que se multiplicaram pelo Leste e por paises do 3º mundo… São nestes dois universos que existem os dois verdadeiros dois riscos nucleares.
    E na questão dos resíduos, que bem referiste, aliás.

  29. Golani

    Nuclear Power Worldwide: Status And Outlook

    ScienceDaily (Oct. 24, 2007) — Nuclear power´s prominence as a major energy source will continue over the next several decades, according to new projections made by the International Atomic Energy Agency (IAEA), which has just published a new report, Energy, Electricity and Nuclear Power for the period up to 2030.

    The IAEA makes two annual projections concerning the growth of nuclear power, a low and a high. The low projection assumes that all nuclear capacity that is currently under construction or firmly in the development pipeline gets completed and attached to the grid, but no other capacity is added. In this low projection, there would be growth in capacity from 370 GW(e) at the end of 2006 to 447 GW(e) in 2030. (A gigawatt = 1000 megawatts = 1 billion watts).

    In the IAEA´s high projection – which adds in additional reasonable and promising projects and plans – global nuclear capacity is estimated to rise to 679 GW(e) in 2030. That would be an average growth rate of about 2.5%/yr.

    “Our job is not so much to predict the future but to prepare for it,” explains the IAEA´s Alan McDonald, Nuclear Energy Analyst. “To that end we update each year a high and low projection to establish the range of uncertainty we ought to be prepared for.”

    Nuclear power´s share of worldwide electricity production rose from less than 1 percent in 1960 to 16 percent in 1986, and that percentage has held essentially constant in the 21 years since 1986. Nuclear electricity generation has grown steadily at the same pace as overall global electricity generation. At the close of 2006, nuclear provided about 15 percent of total electricity worldwide.

    The IAEA´s other key findings as of the end of 2006 are listed below.

    There were 435 operating nuclear reactors around the world, and 29 more were under construction. The US had the most with 103 operating units. France was next with 59. Japan followed with 55, plus one more under construction, and Russia had 31 operating, and seven more under construction.

    Of the 30 countries with nuclear power, the percentage of electricity supplied by nuclear ranged widely: from a high of 78 percent in France; to 54 percent in Belgium; 39 percent in Republic of Korea; 37 percent in Switzerland; 30 percent in Japan; 19 percent in the USA; 16 percent in Russia; 4 percent in South Africa; and 2 percent in China.

    Present nuclear power plant expansion is centred in Asia: 15 of the 29 units under construction at the end of 2006 were in Asia. And 26 of the last 36 reactors to have been connected to the grid were in Asia. India currently gets less than 3% of its electricity from nuclear, but at the end of 2006 it had one-quarter of the nuclear construction – 7 of the world´s 29 reactors that were under construction. India´s plans are even more impressive: an 8-fold increase by 2022 to 10 percent of the electricity supply and a 75-fold increase by 2052 to reach 26 percent of the electricity supply. A 75-fold increase works out to an average of 9.4 percent/yr, about the same as average global nuclear growth from 1970 through 2004. So it´s hardly unprecedented.

    China is experiencing huge energy growth and is trying to expand every source it can, including nuclear power. It has four reactors under construction and plans a nearly five-fold expansion by just 2020. Because China is growing so fast this would still amount to only 4 percent of total electricity.

    Russia had 31 operating reactors, five under construction and significant expansion plans. There´s a lot of discussion in Russia of becoming a full fuel-service provider, including services like leasing fuel, reprocessing spent fuel for countries that are interested, and even leasing reactors.

    Japan had 55 reactors in operation, one under construction, and plans to increase nuclear power´s share of electricity from 30 percent in 2006 to more than 40 percent within the next decade.

    South Korea connected its 20th reactor just last year, has another under construction and has broken ground to start building two more. Nuclear power already supplies 39 percent of its electricity.

    Europe is a good example of “one size does not fit all.” Altogether it had 166 reactors in operation and six under construction. But there are several nuclear prohibition countries like Austria, Italy, Denmark and Ireland. And there are nuclear phase-out countries like Germany and Belgium.

    There are also nuclear expansion programmes in Finland, France, Bulgaria and Ukraine. Finland started construction in 2005 on Olkiluoto-3, which is the first new Western European construction since 1991. France plans to start its next plant in 2007.

    Several countries with nuclear power are still pondering future plans. The UK, with 19 operating plants, many of which are relatively old, had been the most uncertain until recently. Although a final policy decision on nuclear power will await the results of a public consultation now underway, a White Paper on energy published in May 20071/ concluded that “…having reviewed the evidence and information available we believe that the advantages [of new nuclear power] outweigh the disadvantages and that the disadvantages can be effectively managed. On this basis, the Government´s preliminary view is that it is in the public´s interest to give the private sector the option of investing in new nuclear power stations.”

    The US had 103 reactors providing 19 percent of the country´s electricity. For the last few decades the main developments have been improved capacity factors, power increases at existing plants and license renewals. Currently 48 reactors have already received 20-year renewals, so their licensed lifetimes are 60 years. Altogether three-quarters of the US reactors either already have license renewals, have applied for them, or have stated their intention to apply. There have been a lot of announced intentions (about 30 new reactors´ worth) and the Nuclear Regulatory Commission is now reviewing four Early Site Permit applications.

    Adapted from materials provided by International Atomic Energy Agency.

  30. Ok… A Nuclear está aí, percebo. E não vai desaparecer tão cedo. Isso não retira contudo nenhuma força aos meios receios, de facto… Apenas os intensifica. Sobretudo neste ponto, ao qual aliás, já me referi algures:
    “Currently 48 reactors have already received 20-year renewals, so their licensed lifetimes are 60 years.”
    E isto não será feito sacrificando nenhuma segurança?
    É que estes reactores não são aqueles de última geração a que te referes nos comentários acima!…

  31. Golani

    SPIEGEL ONLINE – November 22, 2007, 05:24 PM
    URL: http://www.spiegel.de/international/world/0,1518,519043,00.html
    NUCLEAR EXAGGERATION
    Is Atomic Radiation as Dangerous as We Thought?

    By Matthias Schulz

    A mounting number of studies are coming to some surprising conclusions about the dangers of nuclear radiation. It might not be as deadly as is widely believed.

    Wearing mosquito helmets on their heads and radiation dosimeters on their belts, Clemens Woda and his three Russian colleagues drive past a bored-looking guard leaning nonchalantly against a meter-high fence. The truck moves past a yellow warning sign reading “radioactivity” and into the restricted zone. Inside, the streets and fields show the effects of years of abandonment and are overgrown with tall reeds. The area hugging the swampy banks of the Techa River has been unpopulated for decades.

    The group reaches Metlino, a ghost town that was evacuated in 1956. A weather-beaten grain silo protrudes into the sky. The scientists take soil samples and, wearing rubber boots, wade through the mud over to a Russian Orthodox church in a depressing state of disrepair. One of them climbs the bell tower, hammers at the wall and slides a brick into his bag. The brick will be used as evidence.

    Woda, who works for the GSF Research Center for Health and the Environment, located in the town of Neuherberg near Munich — Europe’s largest radiation protection institute — is currently involved in an exciting investigation. As part of the EU’s “SOUL” (Southern Urals Radiation Risk Research) project, Woda and his team are exploring the region where the Soviets once manufactured the explosive material for their first atomic bomb.

    The Siberian factory was called Mayak (“beacon”). Workers from the gulags laid railroad track and built a “closed city” for 17,000 people, cooling towers and a radiochemical plant. The first nuclear reactor went online in 1948 and was soon producing weapons-grade plutonium for Soviet dictator Josef Stalin. The giant weapons laboratory did not appear on any map.

    A consensus in the West has been reached about what happened next. Soviet nuclear scientists stand accused of having irradiated the environment and of otherwise poisoning the surrounding area. The result, it is said, has been thousands of cancer deaths and myriads of deformed children. Indeed, this autumn, Mayak (of which not a single historic photo exists to this day) celebrated a gruesome anniversary. In the fall of 1957, a tank filled with 80 tons of nuclear waste exploded. According to an eyewitness, a “strange, bright red fog” rose several thousand meters into the air. “In the winter,” says the eyewitness, “I would have terrible headaches and nosebleeds, and I almost went blind.”

    The consequences of the 1957 nuclear accident in Siberia were “far more serious” than Chernobyl, the German television network ARD recently reported. “Most of the pupils in my class died of cancer,” says Gulchara Ismagilova, who was 11 at the time.

    But what really happened? That’s what the team of Bavarian physicists have traveled to Siberia to find out, and that’s why they are taking soil samples and packing bricks into their bags. They are also looking at other important pieces of evidence from the secret nuclear complex. “The employees there were examined with a dosimeter, sometimes once a week, and required to provide urine samples,” says GSF researcher Peter Jacob. The results of the tests were documented in more than 7,000 health records encased in gray cardboard folders. “An invaluable archive,” says Jacob.

    There are even kidneys and livers of workers who died at the site. Preserved in paraffin, they are kept stored next to frozen vials of blood at the Biophysical Institute of Osyorsk. Russian doctors are also collecting hair samples from those workers still alive today along with teeth that have fallen out. The samples are then sent to Germany; 200 teeth are already on file. Once analyzed by the GSF’s state-of-the-art laboratories, the scientists will have radiation profiles for each person who worked at the nuclear plant. The project receives €6.8 million in grant money from the EU.

    Despite this wealth of material, the task is a difficult one. Mistrust of the operators of Mayak runs deep. According to environment organization Greenpeace, 272,000 people were harmed at the facility and in the surrounding area. Even in the town of Muslyumovo, 80 kilometers (50 miles) away, “one in two adults are infertile, and one in three infants are born with deformities,” a Greenpeace report says.

    As deeply disturbing as these claims are, the tests in no way bear them out. Indeed, a number of project groups at the GSF center near Munich are doing their best to determine just how many people fell victim to the radiation pollution at Mayak. Their conclusions? The horrors of Mayak are much less extensive than believed.

    There is no doubt that the workers at this plant east of the Ural Mountains performed dangerous work. Enveloped in a permanent atmosphere of fear — with intelligence agents in black coats constantly hurrying through the hallways — about 150 men would lift the warm, spent fuel elements from the reactors and carry them to the radiochemical plant.

    There, in a long brick building, workers, including many women, sat in a dimly lit environment and placed the encrusted rods into nitric acid, triggering a process that allowed them to remove the weapons-grade plutonium. While the same work was performed with remote-controlled robotic arms in the West, the Soviet workers were not even given masks to wear. There was nothing to stop plutonium gases from entering their lungs.

    And yet the amount of health damage sustained by these workers was astonishingly low. The GSF study has examined 6,293 men who worked at the chemical plant between 1948 and 1972. “So far 301 have died of lung cancer,” says Jacob. “But only 100 cases were caused by radiation. The others were attributed to cigarettes.”

    The second large, but as yet unpublished study by the GSF scientists also offers surprisingly low mortality figures. The subjects in this study were farmers who lived downstream from the nuclear reactors, in 41 small towns and villages along the Techa River. From 1949 to 1951, waste material from the plutonium production — a bubbling toxic soup — was simply poured into the river untreated. As a result, highly radioactive elements such as cesium 137 and strontium 90 were deposited in the river’s sediments. The riverbanks became radioactive.

    A report warning of the dangers was sent to Moscow in 1951. A series of X-ray tests was conducted, and police officers were assigned to guard the river. “We could only see the river through barbed wire or from a small wooden bridge,” says a former resident. By 1960, 22 villages had been evacuated.

    From the standpoint of Russian citizens’ groups, which are currently suing for compensation in the courts, these official steps were half-hearted. In their view, the plant management committed “atomic genocide” against the ethnic Tatars living in the area.

    But as the analyses show, even this accusation is exaggerated. The US National Cancer Institute (NCI) studied 29,873 people who lived along the Techa between 1950 and 1960. According to the NCI scientists, only 46 deaths came about due to radiation exposure.

    The German researchers now know why the death rate was relatively low. Although the Techa was abused as a nuclear waste dump, the abuse was not as severe as the rumor-mongers would have us believe. “The Techa farmer most heavily exposed to the radiation received a dose of only 0.45 Gray,” explains Jacob. By comparison, a lethal dose of radiation, which causes fever, changes in the composition of the blood, irreparable damage to the body and death within two weeks, is 6 Gray.

    The findings hardly jive with the popular image of the atom as evil incarnate. Nightmarish scenarios of lingering illness and birth defects on an apocalyptic scale populate nightmares. In West Germany, the moral and political self-image of an entire generation arose from its battle against radiation, from “no nukes” protest marches to facing off against police water cannons at the Brokdorf nuclear power plant to sit-ins in front of Castor rail containers of reprocessed nuclear waste.

    This hard-line stance was partly rooted in history. On Aug. 6, 1945, a US bomber dropped an atomic bomb code-named Little Boy over Hiroshima. The bomb detonated at an altitude of 600 meters (about 2,000 feet), directly above the center of the city and the resulting fireball, generating temperatures in excess of 5,000 degrees Fahrenheit, swept away all of downtown Hiroshima, killing 140,000 people. Three days later, a second atom bomb was dropped over Nagasaki, killing 70,000.

    The more recent meltdown at the reactor in Chernobyl in 1986 reminded the world of the dangers of the atom. The incident was referred to as “nuclear genocide,” and the press wrote of “forests stained red” and of deformed insects. The public was bombarded with images of Soviet cleanup crews wearing protective suits, bald-headed children with cancer and the members of cement crews who lost their lives in an attempt to seal off the cracked reactor with a concrete plug. Fifteen years after the reactor accident, the German newsmagazine Focus concluded that Chernobyl was responsible for “500,000” deaths.

    Was all this just doomsday folklore? There is no doubt that large sections of the countryside were contaminated by the accident in the Ukraine. In the ensuing decades, up to 4,000 cleanup workers and residents of the more highly contaminated areas died of the long-term consequences of radiation exposure. But the six-figure death counts that opponents of nuclear power once cited are simply nonsense. In most cases, they were derived from vague “extrapolations” based on the hearsay reported by Russian dissidents. But such horror stories have remained part of the nuclear narrative to this day.

    In fact, contemporaries who reported on the Chernobyl incident should have known better. Even in the 1980s, radiobiologists and radiation physicists considered the media’s doomsday reports to be exaggerated.

    And their suspicions have become a virtual certainty today. Groups of researchers have set up shop at all of the sites of nuclear accidents or major nuclear contamination. They work at Hanford (where the United States began producing plutonium in 1944), they conduct studies in the English town of Sellafield (where a contaminated cloud escaped from the chimney in 1957), and they study the fates of former East German uranium mineworkers in the states of Saxony and Thuringia. New mortality rates have now been compiled for all of these groups of individuals at risk. Surprisingly, the highest mortality rates were found among the East German mineworkers.

    In Hiroshima, on the other hand, radioactivity claimed surprisingly few human lives. Experts now know exactly what happened in the first hours, days and weeks after the devastating atomic explosion. Almost all of Hiroshima’s 140,000 victims died quickly. Either they were crushed immediately by the shock wave, or they died within the next few days of acute burns.

    But the notorious radiation sickness — a gradual ailment that leads to certain death for anyone exposed to radiation levels of 6 Gray or higher — was rare. The reason is that Little Boy simply did not produce enough radioactivity. But what about the long-term consequences? Didn’t the radiation work like a time bomb in the body?

    To answer these questions, the Japanese and the Americans launched a giant epidemiological study after the war. The study included all residents of Hiroshima and Nagasaki who had survived the atomic explosion within a 10-kilometer (6.2-mile) radius. Investigators questioned the residents to obtain their precise locations when the bomb exploded, and used this information to calculate a personal radiation dose for each resident. Data was collected for 86,572 people.

    Today, 60 years later, the study’s results are clear. More than 700 people eventually died as a result of radiation received from the atomic attack:

    * 87 died of leukemia;

    * 440 died of tumors;

    * and 250 died of radiation-induced heart attacks.

    * In addition, 30 fetuses developed mental disabilities after they were born.

    Such statistics have attracted little notice so far. The numbers cited in schoolbooks are much higher. According to Wikipedia, the online encyclopedia, 105,000 people died of the “long-term consequences of radiation.”

    “For commendable reasons, many critics have greatly exaggerated the health risks of radioactivity,” says Albrecht Kellerer, a Munich radiation biologist. “But contrary to widespread opinion, the number of victims is by no means in the tens of thousands.”

    Especially surprising, though, is that the stories of birth defects in newborns are also pure fantasy. The press has repeatedly embellished photos of a destroyed Hiroshima with those of deformed children, children without eyes or with three arms. In reality, there hasn’t been a single study that provides evidence of an elevated rate of birth defects.

    A final attempt to establish a connection is currently underway in Japan. The study includes 3,600 people who were unborn fetuses in their mothers’ wombs on that horrific day in August 1945. But it too has failed to furnish any evidence of elevated chromosomal abnormality.

    In Germany, where nuclear fears have coalesced with the fear of dying forests and mad cow disease into a general psychosis of threat, the degree of concern over nuclear radiation remains high. To this day, some are so fearful about the long-term effects of fallout from Chernobyl that they refuse to eat mushrooms from Bavaria. Even 20 years ago such behavior would not have made sense.

    Officially 47 people — members of the emergency rescue crews — died in Chernobyl from exposure to lethal doses of radiation. This is serious enough. “But overall the amount of radiation that escaped was simply too low to claim large numbers of victims,” explains Kellerer.

    The iodine 131 that escaped from the reactor did end up causing severe health problems in Ukraine. It settled on meadows in the form of a fine dust, passing through the food chain, from grass to cows to milk, and eventually accumulating in the thyroid glands of children. About 4,000 children were afflicted with cancer. Less well-known, however, is the fact that only nine of those 4,000 died — thyroid cancers are often easy to operate on.

    “Chernobyl was certainly a catastrophe,” says GSF spokesman Heinz-Jörg Haury. “But it was also distorted and exaggerated.”

    Still, there is no doubt that radiation poisoning remains ominous and highly dangerous. It is also still something of a puzzle to researchers. Stalin’s old weapons plant at Mayak is, in that sense, a goldmine for researchers. It is the equivalent of a laboratory containing thousands of well-documented cases.

    “Russian doctors have accumulated a huge store of knowledge in Mayak,” explains Haury, “which is why everyone wants to go to Siberia now.”

    Plans are already underway for the next expedition.

    Translated from the German by Christopher Sultan

  32. Bem, isso vai de encontro aquilo que também dei conta no meu texto sobre as conclusões de um estudo sobre os efeitos de Chernobyl… De facto, os índicios de que a vida e o ser humano parecem mais capazes de lidar com a radiação do que se pensava estão a aumentar. Espero que assim seja, ao fim ao cabo, a radiação está em todo o lado, p.ex. com os raios cósmicos que nos atravessam, a radiação natural e toda aquela outra que induzimos no ambiente por via humana. Uma coisa é certa: a vida é muito mais resiliente do que se pensava, como provam as comunidades oceânicas detectadas recentemente naquelas fendas vulcânicas ao largo dos Açores…

Deixe uma Resposta

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Google photo

Está a comentar usando a sua conta Google Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

Site no WordPress.com.

Eleitores de Portugal (Associação Cívica)

Associação dedicada à divulgação e promoção da participação eleitoral e política dos cidadãos

Vizinhos em Lisboa

A Vizinhos em Lisboa tem em vista a representação e defesa dos interesses dos moradores residentes nas áreas, freguesias, bairros do concelho de Lisboa nas áreas de planeamento, urbanismo, valorização do património edificado, mobilidade, equipamentos, bem-estar, educação, defesa do património, ambiente e qualidade de vida.

Vizinhos do Areeiro

Núcleo do Areeiro da associação Vizinhos em Lisboa: Movimento de Vizinhos de causas locais e cidadania activa

Vizinhos do Bairro de São Miguel

Movimento informal, inorgânico e não-partidário (nem autárquico independente) de Vizinhos

TRAVÃO ao Alojamento Local

O Alojamento Local, o Uniplaces e a Gentrificação de Lisboa e Porto estão a destruir as cidades

Não aos Serviços de Valor Acrescentado nas Facturas de Comunicações !

Movimento informal de cidadãos contra os abusos dos SVA em facturas de operadores de comunicações

Vizinhos de Alvalade

Movimento informal, inorgânico e não-partidário (nem autárquico independente) de Vizinhos de Alvalade

anExplica

aprender e aprendendo

Subscrição Pública

Plataforma independente de participação cívica

Rede Vida

Just another WordPress.com weblog

Vizinhos do Areeiro

Movimento informal, inorgânico e não-partidário (nem autárquico independente) de Vizinhos do Areeiro

MDP: Movimento pela Democratização dos Partidos Políticos

Movimento apartidário e transpartidário de reforma da democracia interna nos partidos políticos portugueses

Operadores Marítimo-Turísticos de Cascais

Actividade dos Operadores Marítimo Turísticos de Cascais

MaisLisboa

Núcleo MaisDemocracia.org na Área Metropolitana de Lisboa

THE UNIVERSAL LANGUAGE UNITES AND CREATES EQUALITY

A new world with universal laws to own and to govern all with a universal language, a common civilsation and e-democratic culture.

looking beyond borders

foreign policy and global economy

O Futuro é a Liberdade

Discussões sobre Software Livre e Sociedade

%d bloggers like this: